
SENSORIMOTOR GRAPH: Action-Conditioned Relational Forward
Model Learning of Robotic Soft Hand Dynamics

João Damião Almeida∗ 1, Paul Schydlo∗ 1,2, Atabak Dehban1 and José Santos-Victor1

Abstract— The human hand is a complex system, with
many interacting parts, that generates a rich motor repertoire
with complex control dynamics. Human infants acquire such
sophisticated motor skills through sensorimotor learning and
development, by observing the hand/fingers movements in
response to the activation of specific muscles, known as motor
babbling. In this work, we take inspirations from sensorimotor
learning, and apply a Graph Neural Network to the problem
of modelling a non-rigid kinematic chain such as a robotic
soft hand, taking advantage of two key properties: 1) The
system is compositional, that is, it is composed of simple
interacting parts, 2) it is order invariant, i.e. only the structure
of the system is relevant for predicting future trajectories. We
denote our model as the “Sensorimotor Graph”. We benchmark
the “Sensorimotor Graph” against non-structured baselines
and evaluate the model robustness to gradually more adverse
conditions. We find that our model performs on par with studied
baselines in very basic scenarios while significantly outperform
them in more challenging tasks such as configuration changes
and varying number of fingers/joints.

I. INTRODUCTION

A. Motivation

During the first few months of life, newborns go through a
phase of intensive sensorimotor learning, performing endless
“experiments” with their own bodies, using motor babbling
and observing the motor outcomes, to learn how to control
their arms and hands [1]. This learning process to understand
the structure and behaviour of their own hands, is also
observed when, for example, an amputee has to learn how
to adapt to a prosthesis after a replacement surgery.

Consider now an analogous situation for a robotic ma-
nipulator, where a robot needs to understand how to use
its end-effector. To effectively control this system we first
need to write down the equations which govern the system.
This approach is feasible when the relations between the
different parts are simple. This is not the case for systems
with complex non-trivial dynamics such as soft robotics,
fishing nets, cloth, or rubbery materials commonly used in
prosthetic limbs. In this work we seek to explore a self-
calibration strategy inspired by infant sensorimotor learning
through motor babbling: by observing the effects of actuation
signals on a robotic soft-hand we want to infer the underlying
structure and dynamics in the form of a Sensorimotor Graph.

B. Related Work

1) Forward Models: In classical approaches, the system
model and parameters are assumed to be known in advance,

∗Equal contribution 1Institute for Systems and Robotics, Instituto Su-
perior Técnico, University of Lisbon 2Machine Learning Department,
Carnegie Mellon University, USA

Fig. 1. a) Robotic Soft hand system [2] b) Soft material simulation
in SOFA [3] c) Modelling part interaction with graph structured model
d) Differentiable system dynamics can be used in an optimal control
formulation to control the system [4].

and the controller design makes use of this information
[5]. However, when the complexity of the system increases,
considering the kinematics, under-actuation, and dynamics
of dexterous hands, it becomes very difficult to explicitly
write precise and detailed model equations, thus hampering
the model-based control system design. Adaptive control
emerged as a partial solution to this problem [6]. By allowing
parameters of the model to be estimated, it adapts to some
levels of uncertainty regarding model parameters, such as
e.g.: weight of objects. However, this approach is limited to
a fixed structure of the model, which can limit its application
to complex systems.

This has lead the community to consider learning based
approaches to tackle the effects of under-modeling [7],
[8]. Reinforcement learning [9] is one such method which
learns to model and control a system by learning to map
a system state to a control signal, trained by optimizing a
reward signal. The system learns to control implicit system
dynamics. Notwithstanding, reinforcement learning assumes
the availability of interaction samples and a reward signal,



that can be costly to collect.
Model based control, on the other hand, decouples learning

of the system dynamics and control of the system, reducing
the need for costly interaction samples. Optimal control
formulations based on differential system dynamic model
[4], [10] optimize a cost function conditioned on the system
dynamics, reference state and actuation signals.

Learning based approaches are generally based on two
kinds of representations, in structured space, e.g.: 2D or
3D position, or directly on the image space. Image space
representations take as input a sequence of frames and predict
future frames, modelling the dynamics of the environment in
pixel space. This kind of model acts either by encoding the
sequence into a compressed representation of the information
contained in the frames, the so called latent space [8], and
then learning dynamics over this space, or directly warping
past pixels into the future. This representation is not invariant
to distribution shifts such as lighting or camera pose changes.

Methods based on explicit 3D representations on the
other hand are lighting and camera pose invariant. These
approaches are based on either manually annotating the data,
adding additional instrumentation in the form of markers,
or learning to extract and identify key-point representations
in an unsupervised manner [11], [12], [10]. More structured
representations have gained attention with the recent growing
adoption of graph neural networks, which enable learning
based methods to exploit the structure inherent in the prob-
lem domain [10], [13], see next section.

We focus on the question of how to best model a non-
rigid kinematic chain, that is, a dynamical system of inter-
connected parts. We will assume explicit 3D point position
representations, which allow us to limit the scope of this
work to the problem of modelling the non-rigid kinematic
chain of a robotic soft hand. Additionally, this representation
is invariant to lighting and camera pose changes. In a real
system the points can be obtained by either placing markers
on the different fingers or by learning to segment a RGB-D
camera stream into different finger segments.

2) Graph Neural Networks: Neural networks have en-
abled great progress in different areas of robotics and com-
puter vision, yet they are very sensitive to distribution shifts
such as camera pose or lighting changes. Recently, graph
neural network models attempt to bridge the divide between
classical structured and more recent deep learning data-
driven approaches [12]. The combination mitigates short-
comings by reasoning directly over explicit entities and their
relations, the so called relational inductive bias. Imposing
architectural constraints, this class of methods captures the
inherent compositionality of the system, reasoning about
the environment in terms of entities and relations. This is
postulated to be similar to how humans reason about their
environment [12].

Graph neural networks are structured around a set of
entities or nodes/vertices, vi, and relations or edges between
them, ek. Together the nodes and edges form a graph that
defines the dependencies among variables.

Information is propagated through a message passing

mechanism in the form of successive edge and node up-
date [14]. Each edge is updated with the function φe ac-
cumulating and conditioning on the neighbouring nodes.
Each node is updated with a function φv accumulating and
conditioning on the surrounding edges. Successive iterations
of these two functions converge towards the final node
values. This mechanism is similar to the way information
is collected in a convolutional kernel, where a pixel value is
updated as a function of the information of the neighbouring
pixels. Following the notation in [12] this can be written as:

e′k = φe (ek,vrk ,vsk) e′i = ρe→v (E′
i)

v′
i = φv (e′i,vi)

(1)

where rk is the receiving node and sk the sending node. e′k
and v′

i denote the new edge and node values respectively.
The messages are grouped in the following manner.

E′
i = {(e′k, rk, sk)}rk=i,k=1;Ne (2)

Since the accumulation function, ρ, is order invariant, this
kind of network is especially robust to changes in the order of
the points, as long as the topology remains invariant. We take
advantage of this property by exploiting the order invariance
to make the model robust to possible re-identification or
tracking issues.

This structure is specially interesting for physical systems
with structural constraints and has been applied to the
problem domains of springs and systems of articulated parts.
In this work we continue this line of work and extend it to
the domain of soft materials in robotic soft hands.

GNN’s have fueled a growing interest in learning models
over graph structured data [15], these methods generally
send messages over a fully connected graph, not explicitly
capturing the connectivity in the underlying system. In this
work we follow the model proposed in [11] which considers
explicit system graph structure, that is, the connectivity of
the graph mirrors the system connectivity.

C. Our Approach

We propose to learn a structured differentiable action-
conditioned dynamics model based on an explicit joint
connectivity graph, the “Sensorimotor Graph”, of a robotic
soft hand. By observing sequences of joint positions and
actuation signals we infer the underlying system connectivity
and then, to model the system dynamics, we condition our
prediction model on the explicit connectivity graph structure.

We take advantage of the underlying structure of the
system, modelling the system’s Sensorimotor Graph as an
explicit connectivity graph and then applying a Graph Neural
Network (GNN)[16], [11] to model the system dynamics.
This architecture has an implicit relational inductive bias
by assuming a system composed of interacting parts [12],
it learns over structured representations, parts connected
by edges, invariant to order of nodes and compositional,
prediction is result of many simple interactions.

Model predictive control formulations can then take the
learnt differentiable system dynamics model as constraints



and optimize for the actuation actions which minimize a
control objective. [4].

Learning dynamics in this manner enables us to decouple
control and model learning. This implies we can learn the
system in a self-supervised setting, by "babbling" motor
actions, that is, using a wide range of different control signals
on the cable-driven actuator and observing the outcomes,
avoiding costly reward samples. While we apply the method-
ology to the concrete example of a robotic soft hand, the
method is general to any system of interacting parts, e.g.:
springs [11], [17], cloth [10] or crowd behaviour [18].

D. Contributions

We formulate the problem of learning a sensorimotor
model for a robotic soft hand’s non-rigid kinematic chain as
learning an explicit connectivity graph which we designate
Sensorimotor Graph. Additionally, we propose the introduc-
tion of explicit actions to the graph forward model proposed
in [11]. This enables the down-stream application of the
learnt model as a differentiable system dynamics model in
an optimal control application.

Furthermore, we apply this action conditioned graph for-
ward model to the domain of a robotic soft hand, showing
that it can capture the finger’s coupled dynamics and compar-
ing it to different non-structured baseline models. Lastly we
benchmark the model to understand robustness to conditions
with increasing adversity.

II. PROBLEM STATEMENT

In this work we look at modelling a robotic soft hand to
obtain a differential dynamics model for an optimal control
application. We assume the hand is a structured system of
interacting parts. In a formal way, given system observations,
x1:t and actuation signals u1:t, predicting a sequence xt:t+T
into the future. We decouple the problem in two parts, in the
first we infer an explicit connectivity graph, or “Sensorimotor
Graph”, S, and a second part where we predict a future
sequence, xt:t+T , conditioned on S. We model the system
dynamics as the interaction of Nc nodes represented as a
Sensorimotor Graph, S = (V,E), where V is the set of
nodes, V = {vk ∈ Rn}, and E is the set of relations or
edges between them E = {(x, y) | (x, y) ∈ V 2 ∧ x 6= y}.

The system state vector, xt is given by the concatenation
of the node positions, vtk. To be driven by external actuation
signals we consider the actions as part of the node states, this
allows us to either map specific actions to specific nodes,
or map all actions to all nodes and the model inferring the
relation between nodes and actuation signals.

The nodes interact through the system dynamics, F ,
such that, vt+1 = F (xt, E), we assume the case where
the system dynamics can be factored in such a way that
individual node state updates can be written as, vt+1

k =∑
i∈{0, ... ,K : i6=j}H(vti , v

t
j , E(j,i)). That is, the nodes are

related to other nodes through the edges between them. The
edges represent the connectivity of the hand structure.

III. MODEL

As we have seen in the last section, in this work we
consider a dynamical system with underlying Sensorimotor
Graph structure. To best take advantage of this structure
we will apply the Neural Relational Inference (NRI) model
proposed in [11] which considers explicit system graph
structure, that is, the connectivity of the graph mirrors the
system connectivity.

The model is defined in two parts. A first part receives a
sequence of system observations and infers the underlying
edge structure and a second part which takes this edge
structure and system state, predicting the system state into
the future. Both these parts are trained jointly, either by
providing ground truth labels for the edges or by learning
these in an unsupervised manner end-to-end.

The first part, following the notation in [11], is called
the encoder. The encoder takes a sequence of observed
trajectories to infer pair-wise interactions. For this purpose, it
takes a fully connected graph. On this graph, the interaction
between nodes is captured by iterative node to edge and
edge to node message passing iterations. The edge existence
probability is captured as a distribution, qφ(z|x), and the
model is framed as a Variational Auto Encoder, for a more
detailed discussion about the variational aspects of this model
we refer the reader to [11].

More specifically, in the first pass the node to edge
messages are computed using an embedding function, fe,
embedded node values from nodes i and j are then used to
update the edge ei,j between them, after updating the edge
state, another embedding function, fv , takes the edge value
and uses it to compute edge to node messages, the edge
to node messages are aggregated for all edges connected to
node i, then a final node to edge message passing operation
infers the final edge value from which the edge existence
probability is calculated using a softmax function.

h1
j = femb (xj)

v → e : h1
(i,j) = f1e

([
h1
i ,h

1
j

])
e→ v : h2

j = f1v

∑
i6=j

h1
(i,j)


v → e : h2

(i,j) = f2e
([
h2
i ,h

2
j

])
(3)

Given the distribution, it is possible to either train the
model in a supervised setting by providing ground truth
labels for the edges, or training the model end-to-end by
sampling edges from the inferred distribution and using these
as graph structure for the subsequent trajectory prediction
step. The NRI model uses a continuous approximation of
the discrete distribution to effectively sample from a discrete
distribution. Here a temperature parameter, τ , adjusts the
"softness" of the resulting distribution, when τ → 0, the
distribution converges to one-hot samples, as described in
[11].

zij = softmax
((

h2
(i,j) + g

)
/τ
)

(4)



The second part, called the decoder, takes the edges and
uses them as explicit structure for the graph computations
in the trajectory prediction step. Just like the encoder, the
trajectory predictions are based on a sequence of node to
edge and edge to node passes. An initial accumulation
function updates the edge value by weighting adjacent nodes
by the edge existence probability, zi,j,k represents the k-th
entry in the of the vector zi,j , and the embedding function,
f̃ke associated to this edge type k. Subsequently edges are
aggregated in the nodes through an order invariant summa-
tion and transformed by an embedding function, f̃v , added
together with the current node state gives us the mean value,
µt+1
j for the normal distribution from which the next node

state, xt+1
j is sampled.

v → e : h̃t(i,j) =
∑
k

zij,kf̃
k
e

([
xti,x

t
j

])
e→ v : µt+1

j = xtj + f̃v

∑
i 6=j

h
t

(i,j)


p
(
xt+1
j | xt, z

)
= N

(
µt+1
j , σ2I

)
(5)

The decoder can be structured as a transformation function
modelled as an MLP or as an LSTM, acting recursively
on the own internal state when updating the node using a
memory cell.

IV. EXPERIMENTAL SETUP

A. Data Collection

In order to collect diverse data from a soft hand gripper
in motion, the Simulation Open Framework Architecture
(SOFA) [3] is used, alongside with the Soft Robotics Toolkit
[19]. The soft hand configuration is based on a cable actuated
hand, where three-joint fingers are actuated by a pulling cable
(Fig. 2). The finger base is fixed and the variation in the
cable pull actuation signal allows the soft finger to experience
a wide range of motion. Variability is added to the scene
by including fingers in different number and configurations
around a dodecagon. The actuation signal and elasticity of
each finger vary in different trials. Each run in the SOFA
environment creates a sequence of 100 sampled time steps.
For each finger, three points are sampled, one for each joint.

B. Training and Validation Sets

A total of six different data sets are extracted from the
soft gripper simulation. The training set for all tests includes
only four fingers in a total of thirty different configurations
(relative positions) and with four different values of elasticity
we will reference this set as Trainset. For each sample, the
type of motion applied to the cable pull actuation signal for
every finger is the same, although the characteristics of the
motion - amplitude, frequency and phase - are different and
randomized. Three different types of motion are used, all
resulting from operations between trigonometric functions.
Our first set, Testset 0, includes novel configurations, some

Fig. 2. a) Finger postions around the dodecagon with one configuration
selected (green) b) Types of cable pull actuation signals used in the Trainset
for 100 steps.

TABLE I
DESCRIPTION OF VALIDATION SETS

Test Sets Description

Testset1 Unseen motions

Testset2 Unseen configurations

Testset3 Different number of fingers

Testset4 Shuffled points

combinations of motion and elasticity unseen at training
time, as well as a different cable pull actuation signal.

We created four sets to test the model in different val-
idation sets with varying conditions. The validation sets
are setup to understand: Testset 1) How well the model
generalizes to previously unseen motions, Testset 2) Effect
of system configuration (relative position of joints) devi-
ates from the training configurations, either due to sensor
measurement errors or due to changes in the end-effector,
Testset 3) Adaptation to changes in the number of fingers,
either due to mechanical failure of one of the joints or sensor
measurements failing to provide the position for any of the
fingers or points, Testset 4) Robustness to changes in the
order of the joint measurements, either due to tracking errors
or wrong correspondences between detected parts.

More specifically the four validation sets are used to
test the models generalization to motion, relative position,
number of fingers and order of the points, respectively.
The first test set, Testset 1, uses three different motions
and includes random noise. The second test set, Testset 2,
uses the same motions and elasticities as the training set
but for thirteen unseen configurations. The third test set,
Testset 3, uses only three-finger configurations with the same
motions and elasticities whereas the fourth, Testset 4, and last
validation set, shuffles the order of the twelve points for each
sample.

C. Experiments

The model shall be assessed in two separate sets of
experiments: comparison to other methods proposed in the
literature and ablation studies to validate the robustness of
the proposed approach under different conditions.



The first part looks at our approach in relation to baseline
models. In this set of experiments the following models are
quantitatively compared: 1) Linear, 2) Multi-layer Percep-
tron (MLP), 3) Long Short Term Memory sequence model
(LSTM), 4) Neural Relational Inference (NRI).

We consider the linear and multi-layer perceptron models
to validate if the task can be solved by simple linear or non-
linear interpolation of the trajectory points. Long Short Term
Memory model was chosen as being representative of a non-
structured model, enabling us to compare the performance of
a structured sequence model with a non-structured sequence
model. The second part looks more closely at how different
conditions affect the model under analysis. For this purpose,
three models are considered - the two best performing models
in the baselines and the structured model we selected to solve
the task at hand.

V. RESULTS AND DISCUSSION

A. Setup

The experiments are structured around two parts. The first,
is a quantitative comparison of how the different models
perform over the first validation set, Testset 0. The second,
evaluates how each source of variability affects the different
models and how they react to different types of generalization

B. Model Comparison

For the first experiment, the structure-based approach
(NRI) is compared to three different baselines: Linear, MLP
and LSTM. The NRI model has two model variations on the
decoder part of the model, it can either be based on a MLP
(NRI-mlp) or an RNN structure (NRI-rnn), in this experiment
we consider both variants. For each of the possible decoder
structures the encoder has two additional variations: super-
vised and unsupervised. The supervised encoder receives
ground truth edges for the connections between the finger
nodes, the unsupervised learns the connections in an end-to-
end manner while learning to predict future trajectories.

TABLE II
MEAN SQUARED ERROR FOR MODEL AND BASELINES

Model MSE 5 MSE 10
Linear 7.987e-4 1.268e-3
MLP 7.878e-4 1.117e-3

LSTM 6.157e-4 1.354e-3
NRI-mlp 4.962e-4 1.336e-3
NRI-rnn 2.200e-4 8.013e-4

supervised NRI-mlp 4.753e-4 1.281e-3
supervised NRI-rnn 2.108e-4 7.457e-3

In this experiment all models are trained for 10 predictions
steps. In the variations of the NRI with no ground truth
edge information, a non-overlapping set of fifty time steps
is provided to the encoder to estimate the connectivity
graph. For all the baselines and for the NRI-rnn, there is
an initialization or "burn-in" phase where the models have
access to the five time steps before the sequence that is
considered for the evaluation. The LSTM "burn-in" phase,
similarly to the NRI, has fifty steps before the ten step

prediction window. This allows the LSTM to initialize its
internal state.

Table II shows how the proposed model compares to
different baseline models, here we can see that the proposed
model (NRI) outperforms the baseline models in the first
testset, Testset 0, which has a diverse set of motions, con-
figurations and elasticities, when the prediction step equals
the training step. Within the different variations of the NRI
model we find that the best combination is the unsupervised
variant (NRI-rnn). We will look more closely at how this
NRI model variant performs under different conditions in
the next experiment.

Fig. 3. Cumulative mean square error (MSE) over 10 time-steps for
different models.

Figure 3 shows how the models compare when predicting
for 10 steps ahead, the same number they were trained
on. This validation set includes small variations in motion,
elasticity and configurations. We can see that the NRI model
using an RNN decoder outperforms the other variations
considerably. We notice that while the NRI-rnn has better
performance for the first steps, particularly relevant in plan-
ning, the accumulated error starts deteriorating as we predict
beyond the training distribution, further into the future. We
will look at this more closely in the ablation studies.

C. Ablation Study

We will now look at the second set of experiments (Fig.
4) which seek to see how the model performs under different
input distribution shifts. To test the models under a diverse
set of conditions, we will consider Testset 0 under a predic-
tion step of 25 to test how well the model reacts to auto-
regressively predicting more steps ahead than it was trained
on and the four test-sets introduced in the experimental setup,
refer to Table 1 for an overview of the different test-sets. This
enables us to study the effects of the different sources of
prediction error separately. For this ablation study we will
consider the best performing NRI model and two relevant
baselines, LSTM and MLP.

From the four ablation studies, we can see that the NRI
performs worse than the baseline models when generalizing
to the distribution shift introduced by predicting longer
sequences. In this first Testset, the MLP seems to be capable
of predicting longer sequences with a lower mean error, the



Fig. 4. Mean square error (MSE) after the 25 timesteps for different models
and validation sets.

model also proves to have good generalization to new mo-
tions. This advantage of the MLP compared to the structure-
based models can be justified with the fact that it is able to
exploit the relations between the nodes in adjacent positions
of the input vector. The NRI, due to it’s order invariant graph-
based structure only, has access to the nodes without explicit
order like in a vector based representation of the nodes.

This, however, makes the MLP quite fragile to changes
or disturbances in the data. Testing the same model in a
situation with new relative positions of the fingers, MLP’s
prediction error increases considerably. Under the same
conditions, we can see the NRI outperforming the baseline
models. Under the condition of changing the number of
fingers, the MLP is not able to generalize and has an error
significantly higher than the other models and is therefore
not considered in this validation set. We can again see the
NRI outperforming the baseline models in this condition.
The last test-set considers the situation where points are
shuffled and the points at test are in a different order than
the configurations it was trained on. This models a tracking
or re-identification error. Here, again, we can see that, due to
its order invariance properties, the NRI model outperforms
the baseline models.

D. Discussion

We evaluated the model against different baseline models
in two different sets of experiments, in the first we found
that the proposed action conditioned NRI model outperforms
the baseline models on Testset 0 which tests for small
variations in system attributes, this validates the robustness
of the proposed model, furthermore from this first set of
experiments we can see that the unsupervised variant of
the NRI model outperforms the other variants, hinting that
providing ground truth edge connectivity in complex non-
rigid kinematic chains performs worse than self-supervised
discovery of edges, which might find non-trivial edge con-
nectivities not captured in the ground truth edge labels.

In the second set of experiments we found that the
NRI model performs worse than the baseline models when

tested to auto-regressively predicting longer sequences than
trained on and under variations in motion. When tested
under variations of configuration and number of joints it
outperforms the baseline models, validating the robustness
to possible sensor noise. Additionally when tested on a test-
set of shuffled points it shows it is able to reconstruct the
connectivity and outperform the baseline models, validating
robustness to re-identification or tracking issues.

VI. CONCLUSIONS AND FUTURE WORK

In this work we propose applying a graph neural network-
the “Sensorimotor Graph” - to the domain of modelling
a robotic soft hand. More specifically we described the
underlying compositional assumptions of the system and
showed how a structured graph neural network successfully
satisfies the model assumptions. We denote our model as
the “Sensorimotor Graph” as it is inspired on the way
human infants acquire sophisticated motor capabilities, e.g.
of the human hand, through sensorimotor learning and motor
babbling.

We chose the Neural Relation Inference as a candidate
graph neural network for the problem domain. We showed
how the models explicit graph representation enables us to
infer the systems underlying structure. To evaluate the model,
we benchmarked it against non-structured baselines and
evaluated the model robustness to gradually more adverse
conditions. We found that the model performs well under
conditions which require generalizing to changes in structure.

More specifically it performed well under conditions
where the number and location of the fingers changed.

Furthermore, we looked at different variations of the
model and observed that out of the two encoder variations,
supervised and unsupervised, the unsupervised edge discov-
ery sometimes performs better. This means that explicitly
providing the system constraints does not necessarily lead
to optimal results. Training the edge structure inference
and dynamics prediction jointly creates a non-natural hand
structure with finger to finger connections similar to the
hand to hand interactions in other motion capture modeling
approaches [20], [11].

We showed that graph neural networks, more specifically
the Neural Relational Inference model, can be used to
robustly model a system of interacting soft material parts
in the form of a differentiable dynamics model. This opens
up promising avenues for combining the learnt model with
a non-convex optimal control framework, using the differen-
tiable dynamics model as systems constraints.

We believe that the encouraging results and generalization
capabilities of our “Sensorimotor Graph” model, pave the
way to the ability to acquire the structure and dynamics of
complex systems, such as the human/robotic hand, and will
be of utmost importance for the deployment of complex, non-
rigid kinematic chains and articulated end-effectors such as
soft hands for advanced manipulation.

ACKNOWLEDGMENT
This work was supported by a doctoral grant from FCT

(SFRH/BD/139092/2018).



REFERENCES

[1] C. von Hofsten, “An action perspective on motor development,” Trends
in cognitive sciences, vol. 8, no. 6, p. 266—272, June 2004.

[2] B. S. Homberg, R. K. Katzschmann, M. R. Dogar, and D. Rus, “Haptic
identification of objects using a modular soft robotic gripper,” in 2015
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), 2015, pp. 1698–1705.

[3] F. Faure, C. Duriez, H. Delingette, J. Allard, B. Gilles, S. Marchesseau,
H. Talbot, H. Courtecuisse, G. Bousquet, I. Peterlik, and S. Cotin,
SOFA: A Multi-Model Framework for Interactive Physical Simulation,
06 2012, vol. 11.

[4] B. Amos, I. Jimenez, J. Sacks, B. Boots, and J. Z. Kolter,
“Differentiable mpc for end-to-end planning and control,” in
Advances in Neural Information Processing Systems 31, S. Bengio,
H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and
R. Garnett, Eds. Curran Associates, Inc., 2018, pp. 8289–8300.
[Online]. Available: http://papers.nips.cc/paper/8050-differentiable-
mpc-for-end-to-end-planning-and-control.pdf

[5] J. L. Pons, R. Ceres, and F. Pfeiffer, “Multifingered dextrous robotics
hand design and control: A review,” Robotica, vol. 17, no. 6, p.
661–674, Nov. 1999.

[6] T. Hsia, “Adaptive control of robot manipulators - a review,” in
Proceedings. 1986 IEEE International Conference on Robotics and
Automation, vol. 3, 1986, pp. 183–189.

[7] F. Ebert, C. Finn, A. X. Lee, and S. Levine, “Self-supervised visual
planning with temporal skip connections,” in 1st Annual Conference
on Robot Learning, CoRL 2017, Mountain View, California, USA,
November 13-15, 2017, Proceedings, ser. Proceedings of Machine
Learning Research, vol. 78. PMLR, 2017, pp. 344–356.

[8] D. Hafner, T. Lillicrap, I. Fischer, R. Villegas, D. Ha, H. Lee, and
J. Davidson, “Learning latent dynamics for planning from pixels,” in
ICML, 2019.

[9] J. Kober, J. Bagnell, and J. Peters, “Reinforcement learning in robotics:
A survey,” The International Journal of Robotics Research, vol. 32,
pp. 1238 – 1274, 2013.

[10] Y. Li, J. Wu, R. Tedrake, J. B. Tenenbaum, and A. Torralba, “Learning
particle dynamics for manipulating rigid bodies, deformable objects,
and fluids,” in ICLR, 2019.

[11] T. Fetaya, E. Wang, K.-C. Welling, M. Zemel, T. Kipf, E. Fetaya, K.-
C. Wang, M. Welling, and R. Zemel, “Neural relational inference for
interacting systems,” arXiv: Machine Learning, 2018.

[12] P. Battaglia, J. B. Hamrick, V. Bapst, A. Sanchez-Gonzalez,
V. Zambaldi, M. Malinowski, A. Tacchetti, D. Raposo, A. Santoro,
R. Faulkner, Çaglar Gülçehre, H. Song, A. Ballard, J. Gilmer, G. Dahl,
A. Vaswani, K. R. Allen, C. Nash, V. Langston, C. Dyer, N. Heess,
D. Wierstra, P. Kohli, M. Botvinick, O. Vinyals, Y. Li, and R. Pascanu,
“Relational inductive biases, deep learning, and graph networks,”
ArXiv, vol. abs/1806.01261, 2018.

[13] A. Sanchez-Gonzalez, J. Godwin, T. Pfaff, R. Ying, J. Leskovec,
and P. Battaglia, “Learning to simulate complex physics with graph
networks,” ArXiv, vol. abs/2002.09405, 2020.

[14] J. Gilmer, S. S. Schoenholz, P. F. Riley, O. Vinyals, and G. E. Dahl,
“Neural message passing for quantum chemistry,” in Proceedings of
the 34th International Conference on Machine Learning - Volume 70,
ser. ICML’17, 2017, p. 1263–1272.

[15] S. van Steenkiste, M. Chang, K. Greff, and J. Schmidhuber, “Re-
lational neural expectation maximization: Unsupervised discovery of
objects and their interactions,” in 6th International Conference on
Learning Representations, 2018.

[16] F. Scarselli, M. Gori, A. C. Tsoi, M. Hagenbuchner, and G. Monfar-
dini, “The graph neural network model,” IEEE Transactions on Neural
Networks, vol. 20, no. 1, pp. 61–80, 2009.

[17] N. Watters, A. Tacchetti, T. Weber, R. Pascanu, P. Battaglia, and
D. Zoran, “Visual interaction networks: Learning a physics simulator
from video,” in Proceedings of the 31st International Conference on
Neural Information Processing Systems, ser. NIPS’17. Red Hook,
NY, USA: Curran Associates Inc., 2017, p. 4542–4550.

[18] S. H.Y., G. Shivakumar, and H. S. Mohana, “Crowd behavior analysis:
A survey,” in 2017 International Conference on Recent Advances in
Electronics and Communication Technology (ICRAECT), 2017, pp.
169–178.

[19] D. Holland, E. Park, P. Polygerinos, G. Bennett, and C. Walsh, “The
soft robotics toolkit: Shared resources for research and design,” Soft
Robotics, vol. 1, pp. 224–230, 09 2014.

[20] A. Jain, A. R. Zamir, S. Savarese, and A. Saxena, “Structural-rnn:
Deep learning on spatio-temporal graphs,” in IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), 2016.


